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Abstract. The Thomas–Fermi model at finite temperature is extended to describe a system of self-
gravitating weakly interacting massive fermions in a general-relativistic framework. The existence and
properties of the gravitational phase transition in this model are investigated numerically. It is shown that
when a nondegenerate gas of weakly interacting massive fermions is cooled below some critical tempera-
ture, a condensed phase emerges, consisting of quasidegenerate fermion stars. For fermion masses of 10 to
25 keV, these fermion stars may very well provide an alternative explanation for the supermassive compact
dark objects that are observed at galactic centers.

1 Introduction

The ground state of a condensed cloud of fermionic mat-
ter, interacting only gravitationally and having a mass M
below the Oppenheimer–Volkoff (OV) limit [1], is a cold
fermion star in which the degeneracy pressure balances the
gravitational attraction of the fermions. Degenerate stars
of fermions in the mass range between 10 and 25 keV are
particularly interesting [2], as they could explain, without
resorting to the black-hole hypothesis, at least some of
the features observed around the supermassive compact
dark objects with masses in the range of M = 106.5 to
109.5 solar masses. Those are reported to exist at the cen-
ters of a number of galaxies [3–8], including our own [9,
10], and quasistellar objects (QSO) [11–14]. Indeed, a few
Schwarzschild radii away from the object, there is little dif-
ference between a supermassive black hole and a fermion
star of the same mass near the OV limit [15,16].

The purpose of this paper is to study, in the framework
of a general-relativistic Thomas–Fermi model, the forma-
tion of such a star that could have taken place in the early
universe shortly after the nonrelativistic fermionic matter
began to dominate the radiation. This system was pre-
viously studied in the Newtonian approximation [17–22],
and it was shown that the canonical and grand-canonical
ensembles for such a system have a nontrivial thermo-
dynamical limit [17–19]. Under certain conditions, these
systems will undergo a phase transition that is accompa-
nied by a gravitational collapse [21,22]. The phase transi-
tion occurs uniquely in the case of the attractive gravita-
tional interaction of neutral fermions. As the phase transi-
tion does not happen for particles obeying Bose–Einstein
or Boltzmann statistics, this phenomenon is quite dis-
tinct from the usual gravitational clustering of collision-

less dark-matter particles. Gravitational condensation will
also take place if the fermions have an additional short-
range weak interaction, as neutrinos, neutralinos, graviti-
nos, and other weakly interacting massive particles do.

Effects of general relativity cannot be neglected when
the total mass of the system is close to the OV limit [1].
There are three main features that distinguish the general-
relativistic Thomas–Fermi model from the Newtonian one:
(i) the equation of state is relativistic, (ii) the temperature
and chemical potential are metric-dependent local quanti-
ties, and (iii) the gravitational potential satisfies Einstein’s
field equations instead of Poisson’s equation.

This paper is organized as follows: In Sect. 2, we briefly
discuss the nonrelativistic Thomas–Fermi model at finite
temperature. In Sect. 3, this model is extended within a
general-relativistic framework. In Sect. 4, we discuss the
solution at zero and finite temperature and, in particular,
the conditions under which the first-order gravitational
phase transition occurs. Conclusions are drawn in Sect. 5.

2 Thomas–Fermi model in Newtonian gravity

Consider a system of N fermions of mass m interacting
only gravitationally, confined in a spherical cavity of ra-
dius R, in equilibrium at a finite temperature T . For large
N , we can assume that the fermions move in a spheri-
cally symmetric mean-field potential V (r) which satisfies
Poisson’s equation

1
r

d2

dr2
(rV ) = 4πGm2n, (1)

G being the gravitational constant. The number density of
the fermions (including antifermions) n can be expressed
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in terms of the Fermi–Dirac distribution (in units ~ = c =
k = 1)

n(r) = g

∫
d3q

(2π)3

[
1 + exp

(
q2

2mT
+
V (r)
T

− µ

T

)]−1

.

(2)
Here g denotes the combined spin-degeneracy factor of the
neutral fermions and antifermions, i.e., g is 2 or 4 for Ma-
jorana or Dirac fermions, respectively. For each solution
V (r) of (1), the chemical potential µ is adjusted so that
the constraint ∫

d3rn(r) = N (3)

is satisfied. It may be shown that a particular spherically
symmetric configuration n̄(r) will satisfy (1)–(3) if and
only if it extremizes the free energy functional defined as
[18]

F [n] = µ[n]N − 1
2

∫
d3rn(r)V [n] − Tg

∫
d3rd3q

(2π)3

× ln
(

1 + exp
(

− q2

2mT
− V [n]

T
+
µ[n]
T

))
, (4)

where V [n] and µ[n] are implicit functionals of n(r)
through (1)–(3). For a physical solution, we have to re-
quire that the free energy be minimal, i.e.,

δF

δn

∣∣∣∣
n̄

= 0,
δ2F

δn2

∣∣∣∣
n̄

≥ 0. (5)

The set of self-consistency equations (1)–(3), together with
(5), comprises the nonrelativistic gravitational Thomas–
Fermi equation.

It may be easily shown that the following scaling prop-
erty holds: If the potential energy V (r) is a solution to
the self-consistency equations (1)–(3), then the rescaled
Ṽ = A4V (Ar), with A > 0, is also a solution with the
rescaled fermion number Ñ = A3N , radius R̃ = A−1R,
and temperature T̃ = A4T . This property, which will be
referred to as nonrelativistic scaling, implies the existence
of a thermodynamic limit of N−7/3F , with N1/3R and
N−4/3T approaching constant values for N → ∞. In this
limit, the Thomas–Fermi equation becomes exact [18,19].

3 Thomas–Fermi model in general relativity

Consider a self-gravitating gas consisting of N fermions
of mass m in equilibrium within a sphere of radius R.
We denote by p, ρ, n, and σ the pressure, energy density,
particle-number density, and entropy density of the gas,
respectively. The metric generated by the mass distribu-
tion is static, spherically symmetric, and asymptotically
flat, i.e.,

ds2 = ξ2dt2 − (1−2M/r)−1dr2 −r2(dθ2 +sin θdφ2). (6)

Einstein’s field equations are then given by

dξ
dr

= ξ
M + 4πr3p
r(r − 2M)

, (7)

dM
dr

= 4πr2ρ, (8)

with the boundary conditions

ξ(R) =
(

1 − 2M(R)
R

)1/2

; M(0) = 0. (9)

The equation of state may be represented in a parametric
form [23]:

n = g

∫
d3q

(2π)3
1

1 + eE/T̄−µ̄/T̄
, (10)

ρ = g

∫
d3q

(2π)3
E

1 + eE/T̄−µ̄/T̄
, (11)

p = gT̄

∫
d3q

(2π)3
ln(1 + e−E/T̄+µ̄/T̄ ) , (12)

where g denotes the spin-degeneracy factor and E =√
m2 + q2. The quantities T̄ and µ̄ are the local tempera-

ture and chemical potential, respectively. Thermodynamic
and hydrostatic equilibrium in the presence of gravity im-
plies [24,25]

T̄ (r) =
T

ξ(r)
; µ̄(r) =

µ

ξ(r)
. (13)

The constants T and µ are the temperature and chemi-
cal potential at infinity. Although the matter is absent at
r = ∞, the temperature at infinity has a physical meaning:
T is the redshifted temperature [26] of the black-body ra-
diation of a gravitating object in equilibrium at finite tem-
perature measured at infinity. As a consequence of (13),
different gravitating configurations with the same temper-
ature at infinity may have different local temperatures.
Therefore, the relevant thermal equilibrium parameter is
T .

Particle-number conservation yields the constraint

∫ R

0
dr 4πr2(1 − 2M/r)−1/2 n(r) = N. (14)

Given the temperature at infinity T , the set of self-con-
sistency equations (7)–(14) defines the general-relativistic
Thomas–Fermi equation. One additional important
requirement is that a solution to the (7)–(14) should min-
imize the free energy. Based on the considerations given
in [27], the free energy may be written in the form

F = M+µN−
∫ R

0
dr 4πr2ξ(1−2M/r)−1/2(p+ρ), (15)

with M = M(R). The theorem on extremal properties of
the free energy [27] guarantees that solutions to (7)–(14)
extremize the quantity F , i.e., the free-energy functional
assumes either a maximum or a minimum. We have only
to find out which of the solutions are maxima and discard
them as unphysical.
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Next we show that, in the Newtonian limit, we recover
the usual Thomas–Fermi model as defined in Sect. 2. In-
troducing the nonrelativistic chemical potential µNR =
µ − m and the approximations ξ = eϕ ' 1 + ϕ, E '
m+q2/2m and M/r � 1, we arrive at the Thomas–Fermi
self-consistency equations [21,22] in the form

n =
ρ

m
= g

∫
d3q

(2π)3

(
1 + exp(

q2

2mT
+
m

T
ϕ− µNR

T
)
)−1

,

(16)
dϕ
dr

=
M
r2

;
dM
dr

= 4πr2ρ , (17)

ϕ(R) = −mN

R
; M(0) = 0, (18)

∫ R

0
dr 4πr2n(r) = N, (19)

which are equivalent to the set of (1)–(3). The free energy
(15) in the Newtonian limit yields

F = mN+µNRN−1
2

∫ R

0
dr 4πr2nϕ−

∫ R

0
dr 4πr2p , (20)

with

p = gT

∫
d3q

(2π)3
ln

(
1 + exp(− q2

2mT
− m

T
ϕ+

µNR

T
)
)
,

(21)
which, up to a constant, equals the nonrelativistic
Thomas–Fermi free energy (4).

A straightforward thermodynamic limit N → ∞, as
discussed by Hertel, Thirring, and Narnhofer [18,19], is
not directly applicable in the general-relativistic case.
First, in contrast to the Newtonian case, there exists a lim-
iting configuration with maximal M and N (the
Oppenheimer–Volkoff limit) at zero temperature, and, as
we shall shortly demonstrate, also at finite temperature.
Second, the scaling property of the relativistic Thomas–
Fermi equation, which will be referred to as relativistic
scaling, is quite distinct from nonrelativistic scaling. This
scaling property may be formulated as follows: If the con-
figuration {ξ(r),M(r)} is a solution to the self-consistency
equations (7)–(14), then the configuration {ξ̃ = ξ(A−1r),
M̃ = AM(A−1r);A > 0} is also a solution with the
rescaled fermion number Ñ = A3/2N , radius R̃ = AR,
asymptotic temperature T̃ = A−1/2T , and fermion mass
m̃ = A−1/2m. The free energy is then rescaled as F̃ = AF .
Hence there exists a thermodynamic limit of N−2/3F ,
with N−2/3R, N1/3T , and N1/3m approaching constant
values when N → ∞.

4 Numerical integration

In the following we use the units in which G = 1. We
choose appropriate length, mass and fermion number
scales a, b, and c, respectively, such that

a = b =
√

2
g

1
m2 , c =

b

m
, (22)

or, restoring ~, c, and G, we have

a =
√

2
g

~MPl

cm2 = 1.3185×1010
√

2
g

(
15keV
m

)2

km, (23)

b =
√

2
g

M3
Pl

m2 = 0.8929 × 1010
√

2
g

(
15keV
m

)2

M� (24)

c =
√

2
g

M3
Pl

m3 = 5.5942 × 1071
√

2
g

(
15keV
m

)3

(25)

where MPl =
√

~c/G denotes the Planck and M� the
solar mass.

We are looking for a solution of the Thomas–Fermi
problem as a function of temperature. For numerical con-
venience, let us introduce a new parameter

α =
µ

T
(26)

and the substitution

ξ =
µ

m
(Φ+ 1)−1/2. (27)

Using this and (22), we may write (10)–(12) in the form

n =
1
π2

∫ ∞

0
dy

y2

1 + exp[(
√

(y2 + 1)/(Φ+ 1) − 1)α]
,

(28)

ρ =
1
π2

∫ ∞

0
dy

y2
√
y2 + 1

1 + exp[(
√

(y2 + 1)/(Φ+ 1) − 1)α]
,

(29)

p =
1

3π2

∫ ∞

0
dy

× y4√
y2 + 1(1 + exp[(

√
(y2 + 1)/(Φ+ 1) − 1)α]

. (30)

In this way, both the fermion mass and the chemical po-
tential are eliminated from the equation of state.

The field equations (7) and (8) now read

dΦ
dr

= −2(Φ+ 1)
M + 4πr3p
r(r − 2M)

, (31)

dM
dr

= 4πr2ρ. (32)

To these two equations we add

dN
dr

= 4πr2(1 − 2M/r)−1/2n, (33)

imposing the particle-number constraint as a condition at
the boundary:

N (R) = N. (34)

Equations (31)–(33) should be integrated by use of the
boundary conditions at the origin

Φ(0) = Φ0 > −1 ; M(0) = 0 ; N (0) = 0. (35)
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The parameter Φ0, which is uniquely related to the cen-
tral density and pressure, will eventually be fixed by the
requirement (34). For r ≥ R, the function Φ yields the
usual empty-space Schwarzschild solution

Φ(r) =
µ2

m2

(
1 − 2M

r

)−1

− 1 , (36)

with

M = M(R) =
∫ R

0
dr4πr2ρ(r). (37)

We now show that a solution to the general-relativistic
Thomas–Fermi equation exists, provided that the number
of fermions is smaller than a certain number Nmax that
depends on α and R. From (29) and (30) it follows that,
for any α > 0, the equation of state ρ(p) is an infinitely
smooth function and dρ/dp > 0 for p > 0. Then, as shown
by Rendall and Schmidt [28], there exists for any value of
the central density ρ0 a unique static, spherically symmet-
ric solution of the field equations with ρ → 0 as r tends
to infinity. In that limit M(r) → ∞ and N (r) → ∞, as
may be easily seen by analysis of the r → ∞ limit of (31)
and (32). However, the enclosed mass M and the number
of fermions N within a given radius R will be finite. We
can then cut off the matter from R to infinity and join
the interior solution onto the empty-space Schwarzschild
exterior solution by making use of equation (36). This
equation together with (26) fixes the chemical potential
and the temperature at infinity. Furthermore, it may be
shown that our equation of state obeys asymptotically at
high densities a γ law, i.e., ρ = const nγ and p = (γ−1)ρ,
with γ = 4/3. In this case, as is well known [29], there
exists a limiting configuration {ψ∞(r),M(r)∞} such that
M and N approach nonzero values M∞ and N∞, respec-
tively, as the central density ρ0 tends to infinity. Thus, the
quantity N is a continuous function of ρ0 on the interval
0 ≤ ρ0 < ∞, with N = 0 for ρ0 = 0, and N = N∞ as
ρ0 → ∞. The range of N depends on α and R and its
upper bound may be denoted by Nmax(R,α). Thus, for
given α, R and N < Nmax(R,α) the set of self-consistency
equations (28)–(37) has at least one solution.

As is evident from the equation of state (10)–(12), if we
do not fix the boundary and do not constrain the particle
number N , the pressure (and the density) will never van-
ish (except perhaps at r = ∞), unless T = 0. Thus, since
we fix the boundary at R and cut off the matter from R to
infinity, the pressure (and the density) will have a discon-
tinuity. This characteristic of the nonrelativistic Thomas–
Fermi model in atomic physics [30] and Newtonian gravity
[18,21,22] remains in general relativity also. However, the
density and the pressure decrease rapidly with r, so if R
is chosen sufficiently large, the pressure and the density at
the boundary will be extremely small. Furthermore, the
region r > R is never empty in reality, so a positive pres-
sure at the boundary is more realistic than a vanishing
pressure.

The numerical procedure is now straightforward. For a
fixed, arbitrarily chosen α, we first integrate (31) and (32)
numerically on the interval (0, R) and find solutions for

various initial Φ0. Simultaneously integrating (33), we ob-
tain N (R) as a function of Φ0. The specific value of Φ0 is
then determined such that N (R) = N . The chemical po-
tential µ corresponding to this particular solution is given
by (36). If we now eliminate µ using (26), we finally get
the parametric dependence on temperature through α.

Let us first discuss a degenerate fermion gas (T = 0)
as a reference point that can also be compared with the
well-known results by Oppenheimer and Volkoff [1]. In this
case, the Fermi distribution in (28)–(30) becomes a step
function that yields an elementary integral with the upper
limit yF =

√
Φ related to the Fermi momentum

qF = m
√
Φ. (38)

The equation of state can be expressed in terms of ele-
mentary functions of Φ:

n =
1

3π2Φ
√
Φ, (39)

ρ =
1

8π2

[
(2Φ+ 1)

√
Φ(Φ+ 1) − Arsh

√
Φ

]
, (40)

p =
1

24π2

[
(2Φ− 3)

√
Φ(Φ+ 1) + 3Arsh

√
Φ

]
. (41)

The radius of the star is naturally defined as the point
where the density vanishes. At this point, owing to (39),
Φ = 0. Therefore, we integrate equations (28)–(30) start-
ing from r = 0 up to the point R where Φ(R) = 0. As
a result, the quantities M , N , and R are obtained as
functions of the parameter Φ0, which is related to the
central particle-number density through (39). In Fig. 1,
we plot the mass of the star as a function of the ra-
dius R. The maximum of the curve corresponds to the
Oppenheimer–Volkoff (OV) limit [1]. The limiting values
are ROV = 3.357, MOV = 0.38426, and NOV = 0.39853, in
units of a, b, and b/m respectively. The curve to the left of
the maximum represents unstable configurations that curl
up around the point corresponding to the infinite central
density limit.

The OV limiting mass may be regarded as a stability
bound on the coupling parameter for the ground state
of self-gravitating fermionic matter. Historically, Chan-
drasekhar [31] was one of the first to discuss and ap-
proximately determine a similar bound in the context of
white dwarfs. Later on, Lieb and Yau discussed the Chan-
drasekhar limit more rigorously [32]. They also set rigor-
ous stability bounds on the coupling constant for a rela-
tivistic matter interacting via Coulomb forces [33].

We now turn to the study of nonzero temperature. The
quantities T , N , and, R are free parameters in our model,
and their range and choice are dictated by physics. The
temperature T is restricted only to positive values. The
number of fermions N is restricted by the OV limit. The
radius R is theoretically unlimited; practically, it should
not exceed the order of interstellar distances. It is known
that a classical, semidegenerate, isothermal configuration
has no natural boundary in contrast to the degenerate
case of zero temperature, where for given N (up to the
OV limit) the radius R is naturally fixed by the condition



N. Bilić, R.D. Viollier: Gravitational phase transition of fermionic matter in a general-relativistic framework 177

Fig. 1. Mass versus radius for fermion stars at zero temper-
ature in the general-relativistic framework (solid line) com-
pared with the corresponding Newtonian approximation (dot-
ted line). The dashed line is the black hole limit M = R/2

of vanishing pressure and density. At nonzero tempera-
ture, if we, for example, fix only N and T and let R → ∞,
our gas will occupy the entire space, and hence p and ρ
will vanish everywhere. If integrate the equations on the
interval (0,∞) and do not restrict N , then M and N will
diverge at ∞. In such a case, one has to introduce a cut-
off. In the isothermal model of a similar kind by Chau,
Lake, and Stone [36], a cutoff was chosen at the radius
R, where the energy density was about six orders smaller
than the central value. Our choice is based on the follow-
ing considerations: As in the Newtonian Thomas–Fermi
model [22], we expect that for a given number of fermions
N < NOV, there exists a unique configuration that is a so-
lution to the self-consistency equations (7)–(14) and which
becomes a degenerate Fermi gas at T = 0. For such a con-
figuration, an effective radius Reff ≥ ROV may be defined
so that Φ(Reff) = 0. Although the density does not vanish
at this point, most of the mass will be contained inside
the sphere of radius Reff . If we choose the boundary at
R � ROV, the total mass will be dominated by the den-
sity distribution within Reff and will be almost indepen-
dent of the choice of R. Thus in the following we will work
with R = 100 ' 30ROV.

In Fig. 2, the fermion number N is plotted as a func-
tion of initial Φ0 for several values of the parameter α. In
contrast to the T = 0 case, all curves with finite α have
a peak around Φ = 0. The second peak corresponds to
the OV limit. From this figure we can deduce that, for
a given N , there is a range of α for which the Thomas–
Fermi equation may have more than one solution. This is
a clear indication for the existence of an instability even
below the OV limit, and as a consequence, we expect that
a first-order phase transition occurs.

Fig. 2. Fermion number N versus central potential Φ0 for
α = µ/T = 300 (full line) 500 (dashed line) and 150 (dot–
dashed line). T=0 is represented by dotted line

Fig. 3. Temperature T (in units of m) versus 1/α for N = 0.38
and R = 100

Fixing N = 0.38, which is slightly below the OV limit,
we can now plot the temperature as a function of α in
Fig. 3. Using this figure as a parametric function for tem-
perature, the mass, free energy, and entropy are shown as
functions of temperature in Figs. 4, 5, and 6, respectively.
In the temperature interval T = (0.0015 − 0.007)m, there
are three distinct solutions of which only two are physical,
namely those for which the free energy assumes a mini-
mum. The solution that can be continuously extended to
any temperature above the mentioned interval is referred
to as “gas”, whereas the solution that continues to exist
at low temperatures, and eventually becomes a degenerate
Fermi gas at T = 0, will be called “condensate”. In Fig. 2,
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Fig. 4. Total mass (in units of b) versus temperature for N =
0.38 and R = 100

Fig. 5. Free energy per fermion F/N (in units of m) versus
temperature T for N = 0.38 and R = 100

the gas is represented on each curve by the part left from
the first maximum, while the part from the first minimum
up to the second maximum represents the condensate. By
noting that Φ0 is negative for the gas and positive for the
condensate, we may define an order parameter as

δ = Φ0 + |Φ0|, (42)

which is strictly positive in the condensed phase (ordered
phase) and equal to zero in the gaseous phase (disordered
phase).

The phase transition takes place at the temperature
Tc, where the free energy of the gas and that of the con-
densate become equal. The dashed curves in Figs. 4, 5,

Fig. 6. Entropy per fermion S/N versus temperature T for
N = 0.38 and R = 100

and 6 represent the physically unstable solution. In our
example, the transition temperature is Tc = 0.0043951m,
as indicated in the plots by the dotted line. The latent
heat per fermion released during the phase transition is
given by the mass difference at the point of discontinuity

∆M

N
= 0.0438m. (43)

So far, we have studied as an example an object with a
number of fermions N just below the OV limit NOV. Any
object with N < NOV will undergo a gravitational phase
transition at a critical temperature (which depends on the
mass, of course). With decreasing N , the cavity radius R
must be appropriately increased, since the effective ra-
dius of the condensate increases, following approximately
the zero-temperature mass–radius relation. As N becomes
smaller, the system approaches the nonrelativistic scaling
regime discussed in Sect. 2, and for N � NOV, the critical
temperature will decrease according to

Tc = constN4/3, (44)

if the cavity radius R is simultaneously rescaled as N−1/3.
In Fig. 7 we compare the critical temperature calculated
in both Newtonian and general-relativistic Thomas–Fermi
models, as a function of N . The nonrelativistic scaling law
turns out to be very accurate for N < 0.2NOV.

It is important to check that the critical temperature
is not very sensitive to variations of the cavity radius R
for the following two reasons: First, in our model, R is ar-
bitrary except for the requirement that it be much larger
than the effective radius, which for N = 0.38 is of the
order Reff ' ROV = 3.357. Second, if the critical tem-
perature rapidly decreases with R, the adiabatic cooling
of the gas through the universe expansion may not neces-
sarily lead to the point of the phase transition. Figure 8
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Fig. 7. Critical temperature as a function of the fermion num-
ber in the Newtonian (dashed line) and general-relativistic
Thomas–Fermi model (solid line)

Fig. 8. Critical temperature Tc as a function of the cavity
radius R for N = 0.38

shows that the critical temperature indeed decreases very
slowly, by roughly a factor of 2 if R increases from 30 to
300. This is much weaker than the adiabatic cooling of a
nonrelativistic gas, which shows an approximate 1/R2 de-
pendence. Thus we conclude that the gravitational phase
transition will necessarily take place in the course of the
universe expansion.

5 Conclusions

In this work, we extended the Thomas–Fermi model to a
general-relativistic framework. This model was then ap-
plied to a system of self-gravitating fermions. We have

investigated numerically the circumstances under which
this system undergoes a gravitational phase transition at
nonzero temperature. This phase transition is quite dis-
tinct from the more extensively investigated strong-
interaction-driven phase transition that might occur in
neutron stars [34,35]. The main underlying physics here
is the competition between the partial degeneracy pres-
sure due to the Fermi–Dirac statistics and the attractive
force due to the gravitational interaction. It is obvious
that the application of this model to astrophysical systems
will work very well if the nongravitational interactions
between the individual particles can be neglected. This
is certainly the case for, e.g., weakly interacting quaside-
generate heavy neutrino, neutralino, or gravitino matter
[15,22,36–38], but perhaps it could be valid even for colli-
sionless stellar systems [39,40].

Finally, let us briefly comment on a similar model by
Chau, et al. [36] which was considered earlier in the con-
text of a possible galactic massive neutrino halo. Their
model differs from our approach in essentially two aspects:
First, the equation of state is not consistent with the con-
dition of thermodynamical and chemical equilibrium, i.e.,
with our (13) and second, the particle-number constraint
(14) is not imposed in their model. Thus, in contrast to
the Thomas–Fermi model discussed here, the Chau, et al.
model does not describe a canonical system in equilibrium.
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